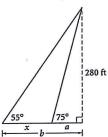
CHAPTER 12

LESSON 12.1

EXERCISES

- 1. 0.6018
- 2. 0.8746
- 3. 0.1405
- 4. a. sin 36° = cos 54°; sin 36° = .5878, cos 54° = .5878. The angles are complementary. The sine of an angle is equal to the cosine of its complement.
 - b. cos 89° = sin 1°; cos 89° = .0175, sin 1° = .0175. The angles are complementary. The sine of an angle is equal to the cosine of its complement.
 - c. $\sin 48^\circ = 2(\sin 24^\circ)(\cos 24^\circ)$; $\sin 48^\circ = .7431$, $\sin 24^\circ = .4067$, and $\cos 24^\circ = .9135$. By substitution, .7431 = 2(.4067)(.9135) when values are rounded.
- **5.** 11.57. $\sin 40^\circ = \frac{x}{18}$, so $x = 18 \sin 40^\circ \approx 11.57$.
- **6.** 30.86. $\cos 52^\circ = \frac{19}{x}$, so $x \cos 52^\circ = 19$, and $x = \frac{19}{\cos 52^\circ} \approx 30.86$.
- **7.** 62.08. $\tan 29^\circ = \frac{x}{112}$, so $x = 112 \tan 29^\circ \approx 62.08$.
- 8. $\sin A = \frac{s}{t}$; $\cos A = \frac{r}{t}$; $\tan A = \frac{s}{r}$. The length of the side opposite $\angle A$ is s, the length of the side adjacent to $\angle A$ is r, and the length of the hypotenuse is t.
- 9. $\sin \theta = \frac{4}{5}$; $\cos \theta = \frac{3}{5}$; $\tan \theta = \frac{4}{3}$. The right triangle has horizontal leg of length 6, vertical leg of length 8, and hypotenuse of length 10, so $\sin \theta = \frac{8}{10} = \frac{4}{5}$, $\cos \theta = \frac{6}{10} = \frac{3}{5}$, and $\tan \theta = \frac{8}{6} = \frac{4}{3}$.
- 10. $\sin A = \frac{7}{25}$; $\cos A = \frac{24}{25}$; $\tan A = \frac{7}{24}$; $\sin B = \frac{24}{25}$; $\cos B = \frac{7}{25}$; $\tan B = \frac{24}{7}$. To find that the length of the hypotenuse is 25, use the Pythagorean Theorem, or recall that 7-24-25 is a Pythagorean triple.
- 11. 30°. $A = \sin^{-1}(0.5) = 30°$.
- **12.** 53°. $B = \cos^{-1}(0.6) \approx 53^{\circ}$.
- 13. 30°. $C = \tan^{-1}(0.5773) \approx 30^\circ$.
- **14.** 24°. $x = \tan^{-1}(\frac{48}{106}) \approx 24^\circ$.
- **15.** $a \approx 35$ cm. $\tan 30^{\circ} = \frac{20}{a}$, so $a \tan 30^{\circ} = 20$, and $a = \frac{20}{\tan 30^{\circ}} \approx 35$ cm.
- **16.** $b \approx 15$ cm. $\sin 65^{\circ} = \frac{b}{17}$, so $b = 17 \sin 65^{\circ} \approx 15$ cm.
- **17.** $c \approx 105$ yd. $\cos 70^{\circ} = \frac{36}{c}$, so $c \cos 70^{\circ} = 36$, and $c = \frac{36}{\cos 70^{\circ}} \approx 105$ yd.
- **18.** $d \approx 40^{\circ}$. $\tan d = \frac{107}{128}$, so $d = \tan^{-1}(\frac{107}{128}) \approx 40^{\circ}$.

- **19.** $e \approx 50$ cm. $\cos 15^{\circ} = \frac{48}{e}$, so $e \cos 15^{\circ} = 48$, and $e = \frac{48}{\cos 15^{\circ}} \approx 50$ cm.
- **20.** $f \approx 33^{\circ}$. $\sin f = \frac{36}{66}$, so $f = \sin^{-1}(\frac{36}{66}) \approx 33^{\circ}$.
- 21. $g \approx 18$ in. The radius of the circle is 21 in., so the diameter is 42 in. The angle opposite the diameter shown in the figure is a right angle because every angle inscribed in a semicircle is a right angle. Therefore, the triangle is a right triangle with hypotenuse of length 42 in. Then $\sin 25^\circ = \frac{g}{42}$, so $g = 42 \sin 25^\circ \approx 18$ in.
- **22.** Approximately 237 m. Let *b* represent the length of the base of the quadrilateral (which is a rectangle) and *h* represent the height. Find the length of the base and then the height: $\sin 35^{\circ} = \frac{b}{85}$, so $b = 85(\sin 35^{\circ}) \approx 48.75$ m, and $\cos 35^{\circ} = \frac{h}{85}$, so $h = 85(\cos 35^{\circ}) \approx 69.63$ cm. Then the perimeter of the rectangle is $2b + 2h \approx 2(48.75) + 2(69.63) \approx 237$ m.
- 23. $x \approx 121$ ft. x is not the length of a side of a right triangle, but you can find x by subtracting length a from length b in this figure.



From the large right triangle, $\tan 55^\circ = \frac{280}{b}$, so $b(\tan 55^\circ) = 280$, and $b = \frac{280}{\tan 55^\circ} \approx 196$ ft. From the small right triangle, $\tan 75^\circ = \frac{280}{a}$, so $a(\tan 75^\circ) = 280$, and $a = \frac{280}{\tan 75^\circ} \approx 75$ ft. Therefore, $x \approx 196 - 75 = 121$ ft.

24. (6, $6\sqrt{3}$). Construct \overline{BB} , then construct the perpendicular bisector of \overline{BB} . By definition of reflection, the distance from point B to the intersection, point P, is the same as the distance from point B' to P. To find the coordinates of point B', use the $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle relationship to find OP = 6 and $BP = 6\sqrt{3}$. Construct \overline{OB} , the hypotenuse of right triangle OPB'. By the $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle relationship, OB' = 12. Construct $\overline{B'D}$ perpendicular to the x-axis. OD = 6 and OB' = 12, so $B'D = 6\sqrt{3}$. The coordinates of B' are $(6, 6\sqrt{3})$.