Use the figure below to answer numbers 4-6.

- 4. Transversal t cuts parallel lines m and n. Which angle is congruent to $\angle 1$?
 - (a) ∠2
 - (b) ∠3
 - (c) ∠7
 - (d) ∠8
- 5. Transversal t cuts parallel lines m and n. If the $m \angle 4 = 110^{\circ}$, what is the $m \angle 7$?
 - (a) 20°
 - (b) 55°
 - (c) 70°
 - (d) 110°
- 6. Which statement must be true about $\angle 3$ and $\angle 6$ in order for line m and n to be parallel?
 - (a) Their measures must be equal.
 - (b) Their measures must be supplementary.
 - (c) Their measure must be complementary.
 - (d) The measure of $\angle 3$ must be greater than the measure of $\angle 2$.

- 7. Line *m* intersects lines *r*, *s*, *t*, and *w*. Which statement must be true?
 - (a) Lines r and s are parallel.
 - (b) Lines r and t are parallel.
 - (c) Lines r and w are parallel.

105°

- (d) Lines s and w are parallel.
- 8. Line t intersects lines m and n. For what value of x are lines m and n parallel?

(d) 45

9. Line t intersects line m and n. Which angle has to be supplementary to $\angle 6$ for lines m and n to be parallel?

10. Given that $l \mid l \mid m$ and $\angle 4 \cong \angle 10$, are lines n and p parallel? Justify and explain.

Using linear pair, vertical angles, corresponding angles, consecutive angles, alternate interior angles, and alternate exterior angles:

- how to get from LI to L3 in two "jumps,"

 1) Explain why it is not possible to jump from 1 to 23
- 2) Find a path from ∠1 to ∠10 that uses at least 5 jumps (ie: ∠1 to ∠4 by consecutive angles; ∠4 to ∠5 by alternate interior angles; ...)
- 3) Find a path from $\angle 1$ to $\angle 10$ that uses vertical angles twice

Find a path from ∠1 to ∠10 that uses every angle

5) Find the shortest path from $\angle 1$ to $\angle 10$