CHAPTER 8 REVIEW

EXERCISES

- 1. Parallelogram (B)
- 3. Trapezoid (C)
- 4. Kite (E)
- 5. Regular polygon (F)
- 6. Circle (D)
- 7. Sector (J)
- 8. Annulus (I)

2. Triangle (A)

- 9. Cylinder (G)
- 10. Cone (H)

11.

12.

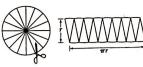
13.

44. \$3,000. First find the surface area of one wedge, which is a triangular prism so it has 5 faces: two triangular bases that are right triangles with base length 6 cm and height 8 cm, one rectangle with dimensions 6 cm by 0.5 cm, one rectangle with dimensions 8 cm by 0.5 cm, and one rectangle with dimensions 10 cm by 0.5 cm.

Area of two triangles = $2(\frac{1}{2} \cdot 6 \cdot 8) = 48 \text{ cm}^2$

Sum of areas of three rectangles =
$$6(0.5) + 8(0.5) + 10(0.5) = 12 \text{ cm}^2$$

Surface area of wedge =
$$48 + 12 = 60 \text{ cm}^2$$


The total surface area of 10,000 metal wedges is $10,000(60) = 600,000 \text{ cm}^2$.

Find the cost for the silver to electroplate these wedges.

$$600,000 \text{ cm}^2 \cdot \frac{\$1}{200 \text{ cm}^2} = \$3,000$$

16. Sample answer: Cut a circular region into 16 wedges and arrange them into a shape that resembles a rectangle. The base length of this "rectangle" is πr

and the height is r, so its area is πr^2 . Thus, the area of a circle is given by the formula $A = \pi r^2$.

- 17. 800 cm². Use the midsegment formula for the area of a trapezoid: A = (midsegment)(height) = (40)(20) = 800 cm².
- **18.** 5990.4 cm². The figure is a regular octagon, so use the formula for the area of a regular polygon. $A = \frac{1}{2}asn = \frac{1}{2}(36)(41.6)(8) = 5990.4 \text{ cm}^2$.
- **19.** $60\pi \approx 188.5$ cm². The shaded region is an annulus. $A_{\text{annulus}} = \pi R^2 \pi r^2 = \pi (8)^2 \pi (2)^2 = 64\pi 4\pi = 60\pi \approx 188.5$ cm².
- **20.** 32 cm. Use the formula $A = \frac{1}{2}bh$. Here, $576 = \frac{1}{2} \cdot 36 \cdot h$, so 576 = 18h, and h = 32 cm.
- **21.** 32 cm. The figure is a kite, so use the formula $A = \frac{1}{2}d_1d_2$. Here, $576 = \frac{1}{2} \cdot d_1 \cdot 36$, so $576 = 18d_1$, and $d_1 = 32$ cm.
- **22.** 15 cm. The figure is a trapezoid, so use the formula $A = \frac{1}{2}h(b_1 + b_2)$.

$$126 = \frac{1}{2}(9)(13 + b)$$

$$252 = 9(13 + b)$$

$$28 = 13 + b$$

$$b = 15 \text{ cm}$$

- **23.** 81π cm². Find the radius of the circle and then use the radius to find the area. $C = 2\pi r$, so $18\pi = 2\pi r$, and r = 9 cm. Then, $A = \pi r^2 = \pi(9)^2 = 81\pi$ cm².
- **24.** 48π cm. Find the radius of the circle and then use the radius to find the circumference. $A = \pi r^2$, so $576\pi = \pi r^2$, $r^2 = 576$, and r = 24 cm. Then, $C = 2\pi r = 2\pi(24) = 48\pi$ cm.
- **25.** 40°. The shaded region is a sector of a circle with radius 12 cm. The area of the sector is 16π cm² and the area of the complete circle is 144π cm², so

$$\frac{A_{\text{sector}}}{A_{\text{circle}}} = \frac{16\pi \text{ cm}^2}{144\pi \text{ cm}^2} = \frac{1}{9}$$

Therefore the sector is $\frac{1}{9}$ of the circle, so $m\angle FAN = \frac{1}{9}(360^{\circ}) = 40^{\circ}$.

26. 153.9 cm². To find the area of the shaded region, subtract the areas of the two small semicircles from the area of the large semicircle.